RHK PanScan

News & Events

Panscan Freedom SPM,  VT Beetle
Events
Event Date: November 6, 2017

November 6, 2017
MMM 2017 – 62nd Annual Conference on Magnetism and Magnetic Materials
The Conference will be held at the David L. Lawrence Convention Center in Pittsburgh, PA, USA
http://magnetism.org/

RHK will be in Booth #24

+Show More
PRIcon
Image of the Month
Posted Date: November 1, 2017

Reference:
Physical Chemistry Chemical Physics 19.30 (2017): 20281-20289

Fig. 4 Overview of the supramolecular phases and the derived structural models for 2HTPTBP on Cu(111) at different coverages (a–c: relatively low coverage; d–f: medium coverage; g–i: monolayer coverage; all the STM images were measured at RT). The red and yellow ovals indicate the individual molecules with different orientations. The intermolecular T-type-like interactions and p–p stacking interactions in the structural models are highlighted by green lines and black parallel lines, respectively. The van der Waals interactions between the phenyl groups of two neighbouring molecules are marked by green dashed lines. Tunnelling parameters: (a) U = 1.0 V, I = 30 pA; (b) U = 1.6 V, I = 30 pA; (d, e, g and h) U = 1.1 V, I = 30 pA.

Fig. 4 Overview of the supramolecular phases and the derived structural models for 2HTPTBP on Cu(111) at different coverages (a–c: relatively low coverage; d–f: medium coverage; g–i: monolayer coverage; all the STM images were measured at RT). The red and yellow ovals indicate the individual molecules with different orientations. The intermolecular T-type-like interactions and p–p stacking interactions in the structural models are highlighted by green lines and black parallel lines, respectively. The van der Waals interactions between the phenyl groups of two neighbouring molecules are marked by green dashed lines. Tunnelling parameters: (a) U = 1.0 V, I = 30 pA; (b) U = 1.6 V, I = 30 pA; (d, e, g and h) U = 1.1 V, I = 30 pA.

Abstract
The adsorption behaviour of 2H-5,10,15,20-tetraphenyltetrabenzoporphyrin (2HTPTBP) on different metal surfaces, i.e., Ag(111), Cu(111), Cu(110), and Cu(110)–(2 􏰀 1)O was investigated by scanning tunnelling microscopy at room temperature. The adsorption of 2HTPTBP on Ag(111) leads to the formation of a well- ordered two-dimensional (2D) island structure due to the mutual stabilization through the intermolecular p–p stacking and T-type-like interactions of phenyl and benzene substituents of neighboring molecules. For 2HTPTBP on Cu(111), the formed 2D supramolecular structures exhibit a coverage-dependent behaviour, which can be understood from the interplay of molecule–substrate and molecule–molecule interactions. In contrast, on Cu(110) the 2HTPTBP molecules form dispersed one-dimensional (1D) molecular chains along the [11%0] direction of the substrate due to relatively strong attractive molecule– substrate interactions. Furthermore, we demonstrate that the reconstruction of the Cu(110) surface by oxygen atoms yields a change in dimensionality of the resulting nanostructures from 1D on Cu(110) to 2D on (2 􏰀 1) oxygen-reconstructed Cu(110), induced by a decreased molecule–substrate interaction combined with attractive molecule–molecule interactions. This comprehensive study on these prototypical systems enables us to deepen the understanding of the particular role of the substrate concerning the adsorption behavior of organic molecules on metal surfaces and thus to tweak the ordering in functional molecular architectures.

Reference:
Physical Chemistry Chemical Physics 19.30 (2017): 20281-20289

Credits:
Liang Zhang, ab Michael Lepper, ab Michael Stark,ab Teresa Menzel,ab
Dominik Lungerich,bc Norbert Jux,bc Wolfgang Hieringer,bd Hans-Peter Steinru ̈ckab and Hubertus Marbach*ab

a Lehrstuhl fu ̈r Physikalische Chemie II, Universita ̈t Erlangen-Nu ̈rnberg, Egerlandstr. 3, 91058 Erlangen, Germany. E-mail: [email protected]

b Interdisciplinary Center for Molecular Materials (ICMM), Universita ̈t Erlangen-Nu ̈rnberg, Germany

c Lehrstuhl fu ̈r Organische Chemie II, Universita ̈t Erlangen-Nu ̈rnberg, Henkestr. 42, 91054 Erlangen, Germany

d Lehrstuhl fu ̈r Theoretische Chemie, Universita ̈t Erlangen-Nu ̈rnberg, Egerlandstr. 3, 91058 Erlangen, Germany

† Electronic supplementary information (ESI) available: The structure models of 2HTPTBP on Cu(111), the STM images of 2HTPTBP on Cu(110) after annealing and the atomic Cartesian coordinates for the calculated gas phase model. See DOI: 10.1039/c7cp03731g

Microscope:
UHV VT Beetle 300

+Show More
Panscan Freedom SPM,  VT Beetle
Events
Event Date: October 31, 2017

Oct. 31 – Nov. 2 Tampa, FL
AVS 64th International Symposium & Exhibition
The Conference will be held at the Tampa Convention Center in Tampa, FL
http://www.avs.org/Symposium

RHK will be in Booth #401

+Show More
PRIcon
Image of the Month
Posted Date: October 18, 2017

Reference:
The Journal of Physical Chemistry C 121.19 (2017): 10470-10475

Figure 3. STM images after exposing Rh(111) to AO: (A) θO,total = 6.4 ML at Tdep = 700 K; (B) θO,total = 2.9 ML at Tdep = 350 K followed by 600 s anneal at 700 K; (C) θO,total = 0.9 ML at Tdep = 350 K followed by 600 s anneal at 700 K. Insets are LEED patterns (62 eV) taken after deposition. STM images were obtained at 30 K and conditions were (L to R) (A) 100 mV, 137 pA; 181 mV, 170 pA; 140 mV, 153 pA; (B) 50 mV, 400 pA; 70 mV, 410 pA; 50 mV, 400 pA; (C) 20 mV, 200 pA; 20 mV, 150 pA; 20 mV, 150 pA.

Figure 3. STM images after exposing Rh(111) to AO: (A) θO,total = 6.4 ML at Tdep = 700 K; (B) θO,total = 2.9 ML at Tdep = 350 K followed by 600 s anneal at 700 K; (C) θO,total = 0.9 ML at Tdep = 350 K followed by 600 s anneal at 700 K. Insets are LEED patterns (62 eV) taken after deposition. STM images were obtained at 30 K and conditions were (L to R) (A) 100 mV, 137 pA; 181 mV, 170 pA; 140 mV, 153 pA; (B) 50 mV, 400 pA; 70 mV, 410 pA; 50 mV, 400 pA; (C) 20 mV, 200 pA; 20 mV, 150 pA; 20 mV, 150 pA.

Abstract
Recent studies have shown the importance of oxide surfaces in heterogeneously catalyzed reactions. Because of the difficulties in reproducibly preparing oxidized metal surfaces, it is often unclear what species are thermodynamically stable and what factors effect the oxide formation process. In this work, we show that the thermodynamically stable phases on Rh(111) after exposure to atomic oxygen are the (2×1)- O adlayer and the trilayer surface oxide, RhO2. Formation of RhO2 was facilitated by surface defects and elevated concentrations of dissolved O atoms in the subsurface region. As the concentration of subsurface O atoms decreased, the coverage of RhO2 decreased so that only the (2×1)- O adlayer was present on the surface. The importance of subsurface oxygen species in RhO2 formation and stability indicates a complex relationship between surface structure and subsurface oxygen concentration.

Reference:
The Journal of Physical Chemistry C 121.19 (2017): 10470-10475

Credits:
Rachael G. Farber,† Marie E. Turano,† Eleanor C. N. Oskorep,† Noelle T. Wands,† Erin V. Iski,‡ and Daniel R. Killelea*,†

†Department of Chemistry & Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60660, United States

‡Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, Oklahoma 74104, United States

Microscope:
Closed Cycle Pan Freedom System

+Show More