News & Events

Image of the Month
Posted Date: October 1, 2016
PanScan Freedom Helium Free

Figure 1: STM images of Ag(111) after exposure to AO (atomic oxygen) at Tdep = 490 K. Exposure duration is labeled in the upper left corner of each image, and the scale bar is in the lower right corner. Panels (A) and (B) show that the p(4 X 5√3) domain was predominant after brief exposures, as were areas of clean Ag(111) with isolated O adatoms that were observed as black depressions, as shown in panel (B). Panels (C)−(F) show that, with increasing AO exposure, several domains coexisted until the surface became uniformly covered in the striped pattern after 300 and 600 s exposures. Imaging conditions for each image were as follows: (A) i = 280 pA, V = 1.0 V; (B) i = 300 pA, V = 800 mV; (C) I = 260 pA, V = 0.400 mV; (D) i = 200 pA, V = 800 mV; (E) i = 300 pA, V = 900 mV; and (F) i = 260 pA, V = 0.970 mV. (ACS Catal. 2016, 6, 4640−4646)

A long-standing challenge in the study of heterogeneously catalyzed reactions on silver surfaces has been the determination of what oxygen species are of greatest chemical importance. This is due to the coexistence of several different surface reconstructions on oxidized silver surfaces. A further complication is subsurface oxygen (Osub ). Osub  are O atoms absorbed into the near surface region of a metal, and are expected to alter the surface in terms of chemistry and structure; however, these effects have yet to be well characterized. We studied oxidized Ag(111) surfaces after exposure to gas-phase O atoms to determine how Osub  is formed and how its presence alters the surface structure. Using a combination of surface science techniques to quantify Osub  formation and the resultant surface structure, we observed that once 0.1 ML of Osub  formed, the surface was dramatically, and uniformly, reconstructed to striped structures at the expense of all other surface structures. Furthermore, Osub  formation was hindered at temperatures above 500 K. The thermal dependence for Osub  formation suggests that, under the industrial catalytic conditions of 475− 500 K for the epoxidation of ethylene to ethylene oxide, Osub  would be present and is a factor in the subsequent reactivity of the catalysts. These findings point to the need for the incorporation of Osub  into catalytic models, as well as further theoretical investigation of the resultant structure observed in the presence of Osub. (ACS Catal. 2016, 6, 4640−4646)

Credits:
Jonathan Derouin,† Rachael G. Farber,† Marie E. Turano,† Erin V. Iski,‡ and Daniel R. Killelea*,†

(ACS Catal. 2016, 6, 4640−4646)

†Department of Chemistry & Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States

‡Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States

Images and data graciously provided by Dan Killelea, Loyola University Chicago, Chicago, Illinois.

Microscope:
RHK PanScan Freedom Microscope

Control System:
RHK R9 Control System

+Show More
Image of the Month
Posted Date: September 1, 2016

Figure 1:  The sample is graphene grown on SiC by Joshua Robinson’s group at Penn State. The image is a large scale (50nm) high resolution (2048px) simultaneously collected dI/dV and topo image. Taken at 200mV and 0.1nA. dI/dV setting is 10mV excitation at 1kHz. The Moire pattern is clear in the main image, while the zoom shows atomic resolution.

Graphene grown on SiC is one of the most promising routes for producing large-scale graphene devices and heterostructures. Here we studied topography and variations in local density of states of graphene grown on SiC by Joshua Robinson’s group at Penn State.  This characterization of the base graphene growth is in preparation for developing work that aims to understand the local electronic states across graphene heterostructures. The figure shows a large scale image (50nm) taken at a high resolution (2048px) and a simultaneously collected dI/dV map (at 200mV and 0.1nA) from Shawna Hollen’s group at University of New Hampshire. The large scale image shows a superposition of a Moire pattern and electronic variations, while the zoom shows details down to atomic resolution.

Shruti Subramanian in Joshua Robinson’s group at Penn State grew the graphene on SiC samples. Jake Riffle in Shawna Hollen’s group at University of New Hampshire took the STM/STS data.

Credits:
Jake Riffle2, Shruti Subramanian1, Joshua Robinson1 and Shawna Hollen2

Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

University of New Hampshire, Department of Physics, 9 Library Way, Durham, NH 03824

Images and data graciously provided by Professor Shawna Hollen, University of New Hampshire, Durham, New Hampshire.

Microscope:
RHK PanScan Freedom STM/AFM

Control System:
RHK R9 Control System

+Show More
Events
Event Date: August 30, 2016

8/30-9/1
ALPEXPO
Avenue d’Innsbruck
38034 Grenoble
France
http://www.ecoss2016.org/

+Show More
Events
Event Date: August 23, 2016

8/23-8/25
2A Hall, 1F Exhibition Center, BEXCO, Busan, Korea
http://ivc20.com/index.php

+Show More