PI Controllers, Lock-ins and PLLs

Steffen Porthun, RHK Technology, Inc.

nc-AFM Summer School, Osnabrück, Sept. 14th, 2016

RHK nc-AFM at a Glance

Beetle VT UHV STM/AFM

- Low drift, low noise, high resolution imaging across broad range of environments and condition and applications
- Extremely flexible and expandable system for broadest experimental flexibility
- Cantilever and qPlus nc-AFM

R9.5 SPM Controller

- Fully Integrated One Box SolutionUltra Low Noise HV Outputs
- · 2 PLLs can be linked or independent
- PLL LockGuard
- Time Based Data Acquisition (TBDA)
- Full Diagnostics Suite

LT UHV STM/AFM

- LHe-Free
- · Cryogen Cost-Free
- · Interruption-Free
- Hassle-Free
- Atomic Resolution 9-400 K
- qPlus nc-AFM

Why do I talk about control electronics

For best results the operator needs to:

- know his microscope and electronics well
- be confident in operating it
- able to interprete symptoms for diagnose

- Introduction
- 2 PI Controllers
 - Gains
 - Step Response
 - Forcing the Output
- 3 Microscope and Signals
 - Signals in and out of the Microscope
 - Phasors and Instantaneous Frequency
 - Cantilever Resonance Plot
- 4 Mixing
- 5 Lock-in Amplifiers [2]
- Mixing and Filtering
 - Decimation
- 6 Phase Locked Loops (PLLs)
 - Adding an Amplitude Control loop
 - PLL Block
 - Tuning the PLL

Feedback Control Systems

A lesson about Control Systems, learned in the shower

Proportional and Integral gain

Gains: P and I

$$\mathit{O} = \mathit{Pe} + \mathit{I} \int \! e \, \mathrm{d} t$$
 , $\mathrm{e} = \mathrm{error}$

Proportional and Integral gain

Gains: P and I

$$O=Pe+I\int e\,\mathrm{d}t$$
 , $\mathrm{e}=\mathrm{error}$

Gain K and cutoff f_c

$$Out = K(e + \pi f_c \int e \, \mathrm{d}t)$$
 , $K = P, f_c = \frac{I}{\pi P}$

Open loop step response

An error signal at the input creates a ramp at the output

Output Limits

lower and upper output limit

sweepable limits squeeze the output and force it to any value

Output Limits

lower and upper output limit

sweepable limits squeeze the output and force it to any value

output limits affect the integrator

Output stays until integrator starts running

PI Controller Block

Signals in and out of the Microscope

Another View on Oscillations

Phasors: Welcome to Complex Signal Processing

Phasors: Welcome to Complex Signal Processing

Phasors

It's like in the Velodrome

Instantaneous Frequency

Instantaneous Frequency [1]

- speed of change on the phase $f = \frac{d\phi}{dt}$
- Unit: deg/s, divide by 360 deg/cycle and get Hz
- can change within a cycle (non-sinusoidal oscillation)

Instantaneous Frequency

Instantaneous Frequency [1]

- speed of change on the phase $f = \frac{d\phi}{dt}$
- Unit: deg/s, divide by 360 deg/cycle and get Hz
- can change within a cycle (non-sinusoidal oscillation)

Fourier Transform Frequency

- frequency $f = \frac{1}{T}$
- does not change over oscillation cycle
- Frequency changes show as sidebands in spectra

Driving a Cantilever with a Sine Wave

Cantilever Resonance Plot

Mixing is Spinning Around the Velodrome's Track

Rotator Logic

Y Input is set to zero

The Mixer's Misinterpretation

Mixing shifts frequencies

Mixing and Filtering

The AFM Lock-in

Decimation

Dynamic Reserve: Measuring 350nV next to a 0.8V Distortion

A lockin can measure slopes

Cartoon Lock-In

Cartoon PLL

PLL in FM Radio Receiver

Cantilever Resonance Plot Again

PLL in Constant Drive (CD) Mode

PLL in Constant Signal (CS) mode

PLL Block

Tuning the PLL

Tuning the PLL

Tuning the Amplitude Controller

PLL Block and Z Control loop

Pitfalls

Cross Talk

Input Offsets

Exampes of more complex systems

Feature Tracking Sideband Kelvin

Feature Tracking

Sideband Kelvin

- Instantaneous Frequency: Boualem Bouashash
 Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals and II. Algorithms and Applications PROCEEDINGS OF THE IEEE, 80, (4), 1992.
- Lockin Amplifiers: Mike. L. Meade
 Lockin Amplifiers: Principles and Applications
 https://sites.google.com/site/lockinamplifiers/home
- RHK Webinars: http://www.rhk-tech.com/support/tutorials/

Thank you for your attention

